
Public

SMART CONTRACT AUDIT REPORT

for

Tetu v2

Prepared By: Xiaomi Huang

PeckShield
January 18, 2023

1/20 PeckShield Audit Report #: 2023-008

contact@peckshield.com

Public

Document Properties

Client Tetu
Title Smart Contract Audit Report
Target Tetu v2
Version 1.0
Author Xuxian Jiang
Auditors Luck Hu, Xuxian Jiang
Reviewed by Patrick Lou
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 January 18, 2023 Xuxian Jiang Final Release
1.0-rc January 16, 2023 Luck Hu Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/20 PeckShield Audit Report #: 2023-008

Public

Contents

1 Introduction 4
1.1 About Tetu v2 . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Revisited Logic in merge() . 11
3.2 Revisited Max Redeem/Withdraw Amounts in TetuVaultV2 12
3.3 Incorrect missing Amount to Withdraw from Splitter 13
3.4 Improved Initial remainingAmount in withdrawToVault() 14
3.5 Trust Issue of Admin Keys . 16
3.6 Suggested Validation of _t in _balanceOfNFT() 17

4 Conclusion 19

References 20

3/20 PeckShield Audit Report #: 2023-008

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the Tetu v2 protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Tetu v2

Tetu is a decentralized yield aggregator committed to providing a next-generation yield aggrega-
tor to DeFi investors. Based on Tetu, the audited Tetu v2 introduces some new features, which
enables protocol users to participate in governance with veTETU, improves the TetuVault with new
deposit/withdraw fees, and introduces new SplitterV2 with auto-rebalance logic adopted to multiple
farming strategies, etc. The basic information of the Tetu v2 protocol is as follows:

Table 1.1: Basic Information of The Tetu v2 Protocol

Item Description
Issuer Tetu

Website https://v2.tetu.io/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report January 18, 2023

In the following, we show the Git repository of reviewed files and the commit hash value used
in this audit. Note that the audit scope only covers the following contracts: ve/VeTetu.sol, vault/

ERC4626Upgradeable.sol, vault/TetuVaultV2.sol, vault/StrategySplitterV2.sol, infrastructure/ControllerV2

.sol, proxy/ControllableV3.sol, proxy/ProxyControlled.sol, proxy/UpgradeableProxy.sol.

4/20 PeckShield Audit Report #: 2023-008

Public

• https://github.com/tetu-io/tetu-contracts-v2.git (5ab0325)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/tetu-io/tetu-contracts-v2.git (fc05eb1)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/20 PeckShield Audit Report #: 2023-008

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/20 PeckShield Audit Report #: 2023-008

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/20 PeckShield Audit Report #: 2023-008

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/20 PeckShield Audit Report #: 2023-008

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Tetu v2 implementation. During the first phase
of our audit, we study the smart contract source code and run our in-house static code analyzer
through the codebase. The purpose here is to statically identify known coding bugs, and then
manually verify (reject or confirm) issues reported by our tool. We further manually review business
logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover possible
pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 4

Low 2

Informational 0

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/20 PeckShield Audit Report #: 2023-008

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 4 medium-severity
vulnerabilities and 2 low-severity vulnerabilities.

Table 2.1: Key Tetu v2 Audit Findings

ID Severity Title Category Status
PVE-001 Medium Revisited Logic in merge() Business Logic Fixed
PVE-002 Low Revisited Max Redeem/Withdraw

Amounts in TetuVaultV2
Business Logic Fixed

PVE-003 Medium Incorrect missing Amount to With-
draw from Splitter

Business Logic Fixed

PVE-004 Medium Improved Initial remainingAmount in
withdrawToVault()

Business Logic Fixed

PVE-005 Medium Trust Issue of Admin Keys Security Features Mitigated
PVE-006 Low Suggested Validation of _t in _bal-

anceOfNFT()
Coding Practices Fixed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/20 PeckShield Audit Report #: 2023-008

Public

3 | Detailed Results

3.1 Revisited Logic in merge()

• ID: PVE-001

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: VeTetu

• Category: Coding Practices [5]

• CWE subcategory: CWE-628 [2]

Description

In the Tetu v2 protocol, the VeTetu contract implements a Vote-Escrow NFT, which gives users the
ability to vote on proposals. Specially, it provides the function for a user to merge his/her NFTs.
While reviewing the logic to merge the NFTs, we notice the current end time of the target NFT may
not be given correctly.

To elaborate, we show below the code snippet of the merge() routine. As the name indicates,
it is used to merge two NFTs of the same user. By design, the new end time of the target NFT shall
be the bigger one from the end times of both NFTs. However, in the first call to the _depositFor()

routine, we notice the lockedEnd parameter which represents the current end time of the target NFT

is set to end directly (line 1024). If the end time of the from NFT is bigger, the end is set to the end
time of the from NFT, which is not the current end time of the target NFT. If the lockedEnd parameter
is not given correctly, some state variables may become unexpected in the _checkpoint() routine,
including the latest check point in the _pointHistory[] and the slope change of the old end time in
the slopeChanges[].

998 function merge(uint _from , uint _to) external nonReentrant {
999 require(attachments[_from] == 0 && voted[_from] == 0, ATTACHED);

1000 require(_from != _to , IDENTICAL_ADDRESS);
1001 require(_idToOwner[_from] == msg.sender && _idToOwner[_to] == msg.sender , NOT_OWNER)

;
1002
1003 uint lockedEndFrom = lockedEnd[_from];
1004 uint lockedEndTo = lockedEnd[_to];

11/20 PeckShield Audit Report #: 2023-008

Public

1005 uint end = lockedEndFrom >= lockedEndTo ? lockedEndFrom : lockedEndTo;
1006 uint oldDerivedAmount = lockedDerivedAmount[_from];
1007
1008 uint length = tokens.length;
1009 for (uint i; i < length; i++) {
1010 address stakingToken = tokens[i];
1011 uint _lockedAmountFrom = lockedAmounts[_from][stakingToken];
1012 if (_lockedAmountFrom == 0) {
1013 continue;
1014 }
1015 lockedAmounts[_from][stakingToken] = 0;
1016
1017 _depositFor(DepositInfo ({
1018 stakingToken : stakingToken ,
1019 tokenId : _to ,
1020 value : _lockedAmountFrom ,
1021 unlockTime : end ,
1022 lockedAmount : lockedAmounts[_to][stakingToken],
1023 lockedDerivedAmount : lockedDerivedAmount[_to],
1024 lockedEnd : end ,
1025 depositType : DepositType.MERGE_TYPE
1026 }));
1027
1028 emit Merged(stakingToken , msg.sender , _from , _to);
1029 }
1030 ...
1031 }

Listing 3.1: VeTetu::merge()

Recommendation Revisit the logic in the above merge() routine and set the lockedEnd parameter
to the current end time of the target NFT in the first call to the _depositFor() routine.

Status The issue has been fixed by this commit: fc05eb1.

3.2 Revisited Max Redeem/Withdraw Amounts in TetuVaultV2

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: TetuVaultV2

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

The TetuVaultV2 contract is a customized ERC4626 vault with some new features added. For example,
it introduces the deposit/withdraw fees. While reviewing the logic to retrieve the maximum withdraw

12/20 PeckShield Audit Report #: 2023-008

https://github.com/tetu-io/tetu-contracts-v2/commit/fc05eb1

Public

amount for a user, we notice it doesn’t properly take the withdraw fee into consideration.
To elaborate, we show below the code snippet of the maxWithdraw() routine. As defined in EIP

-4626, the maxWithdraw() is expected to return the maximum amount of the underlying asset that can
be withdrawn from the owner balance in the vault, through a withdraw call. However, we notice the
maxWithdraw() routine doesn’t take the withdraw fee into consideration, which shall be subtracted from
the calculated asset amount per the owner balance. As a result, it returns an unexpected maximum
withdraw amount that contains the withdraw fee, which shall go to the insurance contract.

321 function maxWithdraw(address owner) public view override returns (uint) {
322 return Math.min(maxWithdrawAssets , convertToAssets(balanceOf(owner)));
323 }

Listing 3.2: maxWithdraw()

Recommendation Revise the maxWithdraw() logic to subtract the withdraw fee from the maxi-
mum withdraw amount.

Status The issue has been fixed by this commit: 6d9ef6d.

3.3 Incorrect missing Amount to Withdraw from Splitter

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: TetuVaultV2

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

In the Tetu v2 protocol, the TetuVaultV2 contract is a customized ERC4626 vault. Users deposits will
be buffered in the vault, and after the defined buffer is filled, the remaining assets are invested to
the splitter. User can withdraw directly from the vault if it has enough assets to cover the buffer and
the withdrawal amount. Or the missing part will be withdrawn from the splitter to the vault. While
examining the calculation of the missing amount, we notice the missing amount calculation needs to
be improved.

To elaborate, we show below the _processWithdrawFromSplitter() routine. As the name indicates,
it is used to calculate for the withdrawal amount from the splitter and move assets to the vault.
Firstly, the routine uses current buffer amount to calculate the desired withdrawal amount from the
splitter. By design, it shall use the new buffer amount which is the total asset amount subtracting
the desired withdrawal amount of the user. What’s more, it doesn’t subtract the available asset

13/20 PeckShield Audit Report #: 2023-008

https://github.com/tetu-io/tetu-contracts-v2/commit/6d9ef6d

Public

amount in the vault from the missing amount. As a result, more assets than expected are withdrawn
from the splitter.

374 f unc t i on _proce s sWi thd rawFromSp l i t t e r (
375 u in t asse t sNeed ,
376 u in t sha r e s ,
377 u in t to ta lSupp ly_ ,
378 u in t _buffer ,
379 I S p l i t t e r _ s p l i t t e r ,
380 u in t a s s e t s I n V a u l t
381) i n t e r n a l {
382 // withdraw everything from the splitter to accurately check the share value
383 i f (s h a r e s == tota lSupp l y_) {
384 _ s p l i t t e r . w i thd rawAl lToVau l t () ;
385 } e l s e {
386 u in t a s s e t s I n S p l i t t e r = _ s p l i t t e r . t o t a l A s s e t s () ;
387 // we should always have buffer amount inside the vault
388 u in t mi s s i n g = (a s s e t s I n S p l i t t e r + a s s e t s I n V a u l t)
389 ∗ _buf f e r / BUFFER_DENOMINATOR
390 + asse t sNeed ;
391 mi s s i n g = Math . min (m i s s i ng , a s s e t s I n S p l i t t e r) ;
392 // if zero should be resolved on splitter side
393 _ s p l i t t e r . withdrawToVault (m i s s i n g) ;
394 }
395 }

Listing 3.3: TetuVaultV2::_processWithdrawFromSplitter()

Recommendation Revise current execution logic of _processWithdrawFromSplitter() to with-
draw the exact desired amount of assets from the splitter.

Status The issue has been fixed by this commit: 6d9ef6d.

3.4 Improved Initial remainingAmount in withdrawToVault()

• ID: PVE-004

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: StrategySplitterV2

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

As described in Section 3.3, when the vault doesn’t have enough assets to cover the withdrawal
amount and the buffer, it will withdraw the missing part from the splitter. Similarly, if it doesn’t
have enough available assets in the splitter, it will withdraw the remaining assets from the strategies

14/20 PeckShield Audit Report #: 2023-008

https://github.com/tetu-io/tetu-contracts-v2/commit/6d9ef6d

Public

one by one starting from the lower APR until the target amount is reached. While reviewing the
withdraw logic in the StrategySplitterV2 contract, we notice it may withdraw more assets than
expected from the strategies.

To elaborate, we show below the code snippet of the withdrawToVault() routine, which is called
from the vault to withdraw assets from the splitter. It takes the target amount from the input
parameter amount. Specially, if current available balance in the splitter is smaller than the target
amount (line 467), it withdraws the remaining amount from the strategies (lines 476−480). However,
it comes to our attention that, the initial remainingAmount is set to the target amount without
subtracting current balance of the splitter (line 466). As a result, it will withdraw more assets from
the strategies than expected. Our analysis shows that, the initial remainingAmount shall be set to
amount - balance.

461 f unc t i on withdrawToVault (uint256 amount) ex te rna l o v e r r i d e {
462 _onlyVaul t () ;
463
464 address _asset = a s s e t ;
465 u in t balance = IERC20 (_asset) . ba lanceOf (address (t h i s)) ;
466 u in t remainingAmount = amount ;
467 i f (balance < amount) {
468 u in t length = s t r a t e g i e s . l ength ;
469 f o r (u in t i = l ength ; i > 0 ; i −−) {
470 I S t r a t egyV2 s t r a t e g y = IS t r a t egyV2 (s t r a t e g i e s [i − 1]) ;
471
472 u in t s t r a t e g yBa l a n c e = s t r a t e g y . t o t a l A s s e t s () ;
473 u in t ba l a n c eBe f o r e = s t r a t e g yBa l a n c e + balance ;
474
475 // withdraw from strategy
476 i f (s t r a t e g yBa l a n c e <= remainingAmount) {
477 s t r a t e g y . w i t h d r awA l l T oSp l i t t e r () ;
478 } e l s e {
479 s t r a t e g y . w i t hd r awToSp l i t t e r (remainingAmount) ;
480 }
481 emit WithdrawFromStrategy (address (s t r a t e g y)) ;
482
483 u in t cu r r e n tBa l a n c e = IERC20 (_asset) . ba lanceOf (address (t h i s)) ;
484 // assume that we can not decrease splitter balance during withdraw process
485 u in t withdrew = cu r r e n tBa l a n c e − balance ;
486 balance = cu r r e n tBa l a n c e ;
487
488 remainingAmount = withdrew <= remainingAmount ? remainingAmount − withdrew : 0 ;
489 . . .
490 }
491 }
492 . . .
493 }

Listing 3.4: StrategySplitterV2 :: withdrawToVault()

15/20 PeckShield Audit Report #: 2023-008

Public

Recommendation Set the initial remainingAmount to amount - balance in case there are not
enough assets available in the splitter.

Status The issue has been fixed by this commit: 6d9ef6d.

3.5 Trust Issue of Admin Keys

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [4]

• CWE subcategory: CWE-287 [1]

Description

In the Tetu v2 protocol, there is a privilege account, i.e., Governance that plays a critical role in
governing and regulating the system-wide operations (e.g., add staking token). In the following, we
use the VeTetu contract as an example and show the representative functions potentially affected by
the privileges of the Governance account.

Specifically, the privileged functions in the VeTetu contract allow for the Governance to set the
whitelist for veTETU token transfer, add new staking token, and set the weight of the staking token,
etc.

233 function whitelistTransferFor(address value) external {
234 require(isGovernance(msg.sender), NOT_GOVERNANCE);
235 require(value != address (0), WRONG_INPUT);
236 uint timeLock = govActionTimeLock[TimeLockType.WHITELIST_TRANSFER];
237 require(timeLock != 0 && timeLock < block.timestamp , TIME_LOCK);
238
239 isWhitelistedTransfer[value] = true;
240 govActionTimeLock[TimeLockType.WHITELIST_TRANSFER] = 0;
241
242 emit TransferWhitelisted(value);
243 }
244
245 function addToken(address token , uint weight) external {
246 require(isGovernance(msg.sender), NOT_GOVERNANCE);
247 uint timeLock = govActionTimeLock[TimeLockType.ADD_TOKEN];
248 require(timeLock != 0 && timeLock < block.timestamp , TIME_LOCK);
249
250 _addToken(token , weight);
251 govActionTimeLock[TimeLockType.ADD_TOKEN] = 0;
252 }
253
254 function _addToken(address token , uint weight) internal {
255 require(token != address (0) && weight != 0, WRONG_INPUT);

16/20 PeckShield Audit Report #: 2023-008

https://github.com/tetu-io/tetu-contracts-v2/commit/6d9ef6d

Public

256 _requireERC20(token);
257
258 uint length = tokens.length;
259 for (uint i; i < length; ++i) {
260 require(token != tokens[i], DUPLICATE);
261 }
262
263 tokens.push(token);
264 tokenWeights[token] = weight;
265 isValidToken[token] = true;
266
267 emit StakingTokenAdded(token , weight);
268 }

Listing 3.5: Example Privileged Operations in the VeTetu Contract

We understand the need of the privileged functions for contract maintenance, but at the same
time the extra power to the privileged accounts may also be a counter-party risk to the protocol users.
It is worrisome if the privileged accounts are plain EOA accounts. Note that a multi-sig account could
greatly alleviate this concern, though it is still far from perfect. Specifically, a better approach is to
eliminate the administration key concern by transferring the role to a community-governed DAO.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been mitigated as the team clarifies that the Governance is Gnosis Safe

multi-sig (3/5) contract with public well-known signers.

3.6 Suggested Validation of _t in _balanceOfNFT()

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: VeTetu

• Category: Coding Practices [5]

• CWE subcategory: CWE-628 [2]

Description

In the Tetu v2 protocol, the VeTetu contract implements a Vote-Escrow NFT where it provides the
interfaces to retrieve the voting power of a NFT. The voting power is calculated per the last check
point of the NFT. While reviewing the logic of the _balanceOfNFTAt() routine, we notice there is a lack
of proper validation for the input timestamp.

17/20 PeckShield Audit Report #: 2023-008

Public

To elaborate, we show below the code snippet of the _balanceOfNFTAt() routine. As the name
indicates, it is used to retrieve the voting power of a NFT at the given timestamp _t. The voting
power is calculated per the (bias, slope) of the last check point and the time elapsed since the last
check point (line 1215). By design, the given timestamp shall be after the time of the last check
point. In case the given timestamp is a history timestamp before the last check point, it shall revert
the call. Based on this, it is suggested to add a validation for the given timestamp _t.

1209 f unc t i on _balanceOfNFT (u in t _tokenId , u in t _t) i n t e r n a l view re tu rn s (u in t) {
1210 u in t _epoch = use rPo in tEpoch [_tokenId] ;
1211 i f (_epoch == 0) {
1212 re tu rn 0 ;
1213 } e l s e {
1214 Po in t memory l a s t P o i n t = _use rPo i n tH i s t o r y [_tokenId] [_epoch] ;
1215 l a s t P o i n t . b i a s −= l a s t P o i n t . s l o p e ∗ int128 (int256 (_t) − int256 (l a s t P o i n t . t s)) ;
1216 i f (l a s t P o i n t . b i a s < 0) {
1217 l a s t P o i n t . b i a s = 0 ;
1218 }
1219 re tu rn u in t (int256 (l a s t P o i n t . b i a s)) ;
1220 }
1221 }

Listing 3.6: VeTetu::_balanceOfNFT()

Recommendation Add a proper validation for the given timestamp to ensure it is before the
time of the last check point for the NFT.

Status The issue has been fixed by this commit: 6d9ef6d.

18/20 PeckShield Audit Report #: 2023-008

https://github.com/tetu-io/tetu-contracts-v2/commit/6d9ef6d

Public

4 | Conclusion

In this audit, we have analyzed the Tetu v2 protocol design and implementation. Tetu is a decentral-
ized yield aggregator committed to providing a next-generation yield aggregator to DeFi investors.
Based on Tetu, the audited Tetu v2 introduces some new features, which enables protocol users to
participate in governance with veTETU, improves the TetuVault with new deposit/withdraw fees, and
introduces new SplitterV2 with auto-rebalance logic adopted to multiple farming strategies, etc.
During the audit, we notice that the current code base is well organized and those identified issues
are promptly confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

19/20 PeckShield Audit Report #: 2023-008

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-628: Function Call with Incorrectly Specified Arguments. https://cwe.mitre.org/

data/definitions/628.html.

[3] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

20/20 PeckShield Audit Report #: 2023-008

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Tetu v2
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Revisited Logic in merge()
	Revisited Max Redeem/Withdraw Amounts in TetuVaultV2
	Incorrect missing Amount to Withdraw from Splitter
	Improved Initial remainingAmount in withdrawToVault()
	Trust Issue of Admin Keys
	Suggested Validation of _t in _balanceOfNFT()

	Conclusion
	References

